
Chapter

6 Hash Tables

Operating a card sorter, 1920. U.S. Census Bureau.

Contents

6.1 Maps . 189

6.2 Hash Functions . 192

6.3 Handling Collisions and Rehashing 198

6.4 Cuckoo Hashing . 206

6.5 Universal Hashing . 212

6.6 Exercises . 215

188 Chapter 6. Hash Tables

Dest ination:

128.34.62.105

Packet of

a video snippet

Sunflower

router

64 network

connections

Suppose you are working on a development team that is designing the next

generation of a network router for a major technology company. Such devices

processes information packets, allowing them to move through networks having

lots of interconnections. In this case, your team’s job is to design a router, code

named “Sunflower,” that can process 64 streams of high-definition video at a time.

When a packet is received from one of the 64 cables that connect to the Sun-

flower router, it must examine destination information stored in the beginning of

that packet and quickly decide along which of the 63 remaining cables to send

it. Indeed, to avoid introducing annoying pauses in a video stream, the Sunflower

router needs to process each such packet in at most 25 microseconds. Your job is

to write the software that processes the destination information for deciding where

to send each packet.

Viewed abstractly, each packet can be modeled as a pair, (k, x), where k is a

key indicating the destination for this packet and x is the data contained in this

packet, which would, in this case, be a snippet of some video stream. To process

such a packet, your software needs to maintain a collection of pairs, (k, c), each of

which indicates the cable, c, where the Sunflower router should send a packet with

the destination k. Your system must support an operation, put(k, c), which adds a

key-cable pair to the collection, and an operation, get(k), which returns the cable

number in the collection for a given destination key, k.

One possibility, of course, is to use a linked list to store (k, c) pairs. This

implementation choice would allow you to perform the put(k, c) operation in O(1)
time, since you could simply put each new pair at the beginning of the list. But

you have correctly realized that such a solution would take O(n) time to process a

single get(k) operation on a collection of n pairs, since you would, in general, have

to search through the entire list of n pairs to find a pair with the key k. Therefore,

such a solution would put your team significantly over the 25 microsecond time

limit if n is relatively large. Fortunately, there is a better choice, which is to use an

instance of the hash table data structure we discuss in this chapter.

This data structure is able to achieve O(1) expected time for both get and put
operations. Indeed, we describe variations of this data structure that can achieve

worst-case O(1) time performance for either get or put operations, with the other

operation still running in O(1) expected time. Because of such performance bounds,

hash tables are used in a host of different applications besides network routers, in-

cluding operating systems, computer games, and bioinformatics.

6.1. Maps 189

6.1 Maps

The main idea at the heart of the hash table data structure is that it allows users to

assign keys to elements and then use those keys later to look up or remove elements.

(See Figure 6.1.) This functionality defines a data structure known as a dictionary

or map. That is, this structure supports methods for the insertion, removal, and

searching of values in terms of keys associated with those values.

Figure 6.1: A conceptual illustration of a map data structure. Keys are like labels

assigned to file folders, which serve as the values. The resulting item (labeled file

folders) is then inserted into the map (file cabinet) by a file clerk. The keys can

be used later to retrieve or remove the items. (Included image: LC-DIG-ppmsca-

03084, 1945. U.S. government image, U.S. Office of War Information.)

6.1.1 The Map Definition

A map stores a collection of key-value pairs, (k, v), which we call items, where k
is a key and v is a value that is associated with that key. For example, in a map

storing student records (such as the student’s name, address, and course grades),

the key might be the student’s ID number. That is, a key is an identifier that is

assigned by an application or user to an associated value, which we allow to be any

data element.

For the sake of generality, some definitions allow a map to associated multiple

values with the same key. Nevertheless, in most applications we would probably

want to disallow items with the same key (for example, in a map storing student

190 Chapter 6. Hash Tables

records, we would probably want to disallow two students having the same ID).

In such cases when keys are unique, then the key associated with an object can be

viewed as an “address” for that object in memory. Indeed, such maps are sometimes

referred to as “associative stores,” because the key associated with an object deter-

mines its “location” in the map. Thus, we assume here that keys are unique and we

refer to a map that allows for multiple values for the same key as a multimap.

As map data structure, M , supports the following fundamental methods:

get(k): If M contains an item with key equal to k, then return

the value of such an item; else return a special element

NULL.

put(k, v): Insert an item with key k and value v; if there is already

an item with key k, then replace its value with v.

remove(k): Remove from M an item with key equal to k, and return

this item. If M has no such item, then return the special

element NULL.

Note that when operations get(k) and remove(k) are unsuccessful (that is, the map

M has no item with key equal to k), we use the convention of returning a special

element NULL. Such a special element is known as a sentinel. Alternatively, we

could have had these methods indicate an error or exception in such cases, but it

would not normally be considered an error to search for a key that happens not to

be present in a map.

In addition, a map can implement other supporting methods, such as size() and

isEmpty() methods for containers. Moreover, we could include methods for listing

out the items, values, or keys in M . Still, the above three methods are the essential

ones for a Map structure.

As mentioned above, the keys associated with values in a map are often meant

to be “addresses” for those values. In addition to their applications in Internet

routers, as in the Sunflower router mentioned above, another application of a map is

in a compiler’s symbol table, where each name in a program is a key associated with

a variable, function, or class. In this case, we would store name-value associations,

where each name serves as the “address” for properties about a variable’s type and

value.

6.1.2 Lookup Tables

In some cases, the universe of keys that will be used for a map is the set of integers

in the range [0, N − 1], for a reasonably small value of N . In such a scenario,

there is an almost trivial way of implementing a map—namely, we can allocate an

array, A, of size N , where each cell of A is thought of as a “bucket” that can hold

a single key-element pairs (or a pointer to such a pair). Since we assume that keys

are distinct, we can use A to store any key-value pair (k, v) by placing that pair in

6.1. Maps 191

the cell A[k]. In this case, we refer to this implementation as a lookup table, since

the key k allows us to simply “look up” the item for k by a single array-indexing

operation.

Performing the essential operations for a map in this case is quite simple. We

begin by allocating the array A so that every cell is initially associated with the

special NULL object. Then, we perform the map operations as follows:

• To perform a put(k, v) operation, we assign (k, v) to A[k].

• To perform a get(k) operation, we return A[k].

• To perform a remove(k) operation, we return A[k] and then we assign the

NULL item to A[k].

(See Figure 6.2.)

1 10987654320

The bucket for items

with key = 6

Figure 6.2: How a lookup table works.

Analysis of a Lookup Table

The analysis of the performance of a lookup table is also simple. Each of the

essential map methods runs in O(1) time in worst case. Thus, in terms for time

performance, the lookup table is optimal.

There are some drawbacks with this implementation, however. In terms of

space usage, we note that the total amount of memory used for a lookup table is

Θ(N). In this case, we refer to the size, N , of the array A as being the capacity

of this map implementation. Such an amount of space is certainly reasonable if

the number of items, n, being stored in the map is close to N . But if N is large

relative to n, then one drawback of this implementation is that it is wasteful of

space. Another drawback with this implementation is that it requires keys be unique

integers in the range [0, N − 1], which is often not the case. Thus, it would be nice

to have a mechanism to overcome these drawbacks while still achieving simple and

fast methods for implementing the essential operations for a map.

192 Chapter 6. Hash Tables

6.2 Hash Functions

If we cannot assume that keys are unique integers in the range [0, N − 1], but we

nevertheless still want to use something akin to a lookup table for storing key-value

pairs, then we need a good way of assigning keys to integers in this range. That is,

we need a function, h, called a hash function, that maps each key k in our map to

an integer in the range [0, N − 1], where N is the capacity of the underlying array

for this table. The use of such a function allows us to treat objects, such as strings,

as numbers.

Using a Hash Function with a Lookup Table

Equipped with such a function, h, we can apply the lookup table approach to ar-

bitrary keys. The main idea of this approach is to use the hash value, h(k), as an

index into our array, A, instead of the key k itself. That is, the idea is to try to store

the item (k, v) in the bucket A[h(k)]. (See Figure 6.3.)

1 10987654320

h

366 425106 1030

h(366)
h(425)

h(1030)

h(106)

Figure 6.3: How a hash function, h, works with a lookup table. For simplicity, we

only show keys, not values.

6.2. Hash Functions 193

Collisions

One complication that we have to deal with when using this approach, however, is

that it is entirely possible that the hash function, h, could map two distinct keys to

the same location in A. That is, we could have h(k) = h(l), for k 	= l, for two

keys k and l in our map. We refer to such a pair of keys with the same hash value,

j, as causing a collision at j. Likewise, we say that a hash function is “good”

if it maps the keys in our map so as to minimize collisions as much as possible.

In other words, we would like the hash function h to look as random as possible,

since a truly random function would automatically minimize the expected number

of collisions for any given hash value, j. For practical reasons, we also would like

the evaluation of a given hash function to be fast and easy to compute.

Viewing Keys as Bit Strings, Tuples, or Integers

Any kind of key that is of interest in a computing application must be representable

as a binary string. Thus, without loss of generality, we can assume that any key

used with a map data structure is a binary string. Of course, any such binary string

can be interpreted as belonging to any one of a large number of different data types.

Nevertheless, the standard convention for hash functions is to view keys in one of

two ways:

• Each key, k, is a tuple of integers, (x1, x2, . . . , xd), with each xi being an

integer in the range [0, M − 1], for some M and d.

• Each key, k, is a nonnegative integer, which could possibly be very large.

For example, if our keys are character strings, such as in the case of the variable

names in a programming language or words taken from web pages, then it is prob-

ably most natural to view such keys as tuples. Alternatively, if our keys are fixed-

length IP addresses of destination domains on the Internet, then it is probably most

natural to view them as single integers.

Depending on which of these two viewpoints we take, there are a number of

different kinds of hash functions that we can consider. In fact, there are a large

number of different hash functions that have been published over the years, each

of which is based on the goal of minimizing collisions. Rather than survey all the

different existing hash functions, however, we restrict our discussion in this section

to some important representative hash functions. This collection is representative

of existing hash functions in that most of the existing functions contain elements

from the ones we discuss and assume that keys come in one of the above two forms.

In some cases, a hashing scheme might use both forms of keys, for instance, first

viewing an input key as a tuple and mapping that to some integer based on one hash

function, and then further mapping that single integer to some other value based on

yet another hash function.

194 Chapter 6. Hash Tables

6.2.1 Summing Components

In the case when each of our keys, k, is a d-tuple, of the form

(x1, x2, . . . , xd),

where each xi is an integer, one possible hash function we could use is to sum up

the different components in each key. That is, we could compute h(k) as

h(k) =
d

∑

i=1

xi,

where this sum is taken over either the integers or is done so that every addition is

modulo some integer, p, so that the result is in the range [0, p − 1].

A slight variation on this theme is to compute an exclusive-or of all the compo-

nents of a key, which could be written mathematically as

h(k) = ⊕d
i=1xi,

where ⊕ denotes the bitwise exclusive-or (XOR) operation. Using an XOR is

sometimes preferred over addition in that there are no extra complications regard-

ing carry bits when one is doing XORs and the XOR operation itself is often a

fast built-in operation for most CPUs. But there are some caveats, as the XOR

of a number and itself is always 0, so care should be taken if there are duplicate

components in a tuple.

How Symmetry Can Cause Collisions

Unfortunately, such hash functions, which consist of either summing or XORing

the components of each key, are actually not that good in most applications. In

particular, such a function is fairly poor at avoiding collisions for the case when

keys are character strings or other multiple-length objects that can be viewed as

tuples of the form (x1, x2, . . . , xk), as used above, where the order of the xi’s is

significant.

For example, consider such a hash function for a character string s that sums the

ASCII (or Unicode) values of the characters in s. This hash function produces lots

of unwanted collisions for common groups of strings. For instance, "temp01"

and "temp10" collide using this function, as do the four words,

"stop", "tops", "pots", and "spot".

A better hash code in such cases should somehow take into consideration the posi-

tions of the xi’s. That is, each index, i, should play a role in the hash function in

some way.

6.2. Hash Functions 195

6.2.2 Polynomial-Evaluation Functions

An alternative hash code, which does a better job at factoring in the positional in-

formation of the components in a key k = (x1, x2, . . . , xd), is to choose a nonzero

constant, a 	= 1, and use as a hash function the following:

h(k) = x1a
d−1 + x2a

d−2 + · · · + xd−1a + xd,

which, by Horner’s rule (see Exercise C-1.14), can be rewritten as

h(k) = xd + a(xd−1 + a(xd−2 + · · · + a(x3 + a(x2 + ax1)) · · ·)).

Note that we can evaluate such a hash function in a simple for-loop, which has

d − 1 iterations; hence, this function can be evaluated using d − 1 additions and

d − 1 multiplications. Mathematically speaking, the hash function, h, in this case

is a (d − 1)-degree polynomial, which is being evaluated for the argument a, and

has the components (x1, x2, . . . , xd) as its coefficients. We therefore refer to this

hash function as a polynomial-evaluation hash function.

Intuitively, a polynomial-evaluation hash function uses multiplication by the

constant a as a way of “making room” for each component in a tuple of values

while also preserving a characterization of the previous components. Of course,

on a typical computer, evaluating a polynomial will be done using the finite bit

representation for a hash code; hence, the value will periodically overflow the bits

used for an integer. Since we are more interested in a good spread of the object x
with respect to other keys, we simply ignore such overflows or we assume that all

the arithmetic is being done modulo some prime number, p. In any case, one of

the critical design decisions in using this hash function is choosing the constant, a.

Intuitively, a should have some higher-order bits to “shift” over the running partial

sum to make room for the new term while also having some lower-order bits to

allow each new term to be factored in.

Special Values for English Words

We have done some experimental studies that suggest that 33, 37, 39, and 41 are

good choices for a when working with character strings that are English words. In

fact, in a list of over 50,000 English words formed as the union of the word lists

provided in two variants of Unix, we found that taking a to be 33, 37, 39, or 41

produced less than 7 collisions in each case. It should come as no surprise, then,

to learn that actual character string hash functions often choose the polynomial

hash function using one of these constants for a. For the sake of speed, however,

some implementations only apply the polynomial hash function to a fraction of the

characters in long strings, say, every eight characters.

196 Chapter 6. Hash Tables

6.2.3 Tabulation-Based Hashing

For the case when each key can be viewed as a tuple, k = (x1, x2, . . . , xd), for a

fixed d, there is another class of hash functions we can use, which involve simple

table lookups. These are known as tabulation-based hash functions, and they can

be applied even for hashing on small devices, since they make no use of addition

or multiplication.

So, let us assume that all our keys are of the form k = (x1, x2, . . . , xd), for

a fixed d, and each xi is in the range [0, M − 1]. Then we can initialize d tables,

T1, T2, . . . , Td, of size M each, so that each Ti[j] is a uniformly chosen independent

random number in the range [0, N − 1]. We then can compute the hash function,

h(k), as

h(k) = T1[x1] ⊕ T2[x2] ⊕ · · · ⊕ Td[xd].

Note, in addition, that we might as well assume that N ≤ Md, for otherwise we

could simply use each key, k, as an integer index for hashing, as in the standard

lookup table implementation. Also, recall that the number of keys, n, may be

different than the capacity, N , of our hash table.

Because the values in the tables are themselves chosen at random, such a func-

tion is itself fairly random. For instance, it can be shown that such a function will

cause two distinct keys to collide at the same hash value with probability 1/N ,

which is what we would get from a perfectly random function. In addition, this

function only uses the XOR operation; hence, it can be evaluated without doing

any additions and multiplications, which may take more time than XOR operations

on some machines.

6.2.4 Modular Division

In the case that we can view the key k as a single integer, perhaps the simplest

hash function is to use modular division to compress k into the range [0, N − 1] as

follows:

h(k) = k mod N.

If we take N to be a prime number, then the division compression map helps

“spread out” the distribution of hashed values. Indeed, if N is not prime, there is

a higher likelihood that patterns in the distribution of keys will be repeated in the

distribution of hash codes, thereby causing collisions. For example, if we hash the

keys {200, 205, 210, 215, 220, . . . , 600} to a bucket array of size 100, then each

hash code will collide with three others. But if this same set of keys is hashed to

a bucket array of size 101, then there will be no collisions. If we can assume that

the set of keys is uniformly randomly distributed among an integer range much

larger than N , then the modular-division hash function should guarantee that the

probability of two different keys being hashed to the same value is at most 1/N .

6.2. Hash Functions 197

Choosing N to be a prime number and having uniformly distributed keys is not

always enough to avoid such collisions, however, if the keys are not also random.

For example, if there is a repeated pattern of key values of the form iN + j for

several different i’s, then such a set of keys would be uniformly distributed but they

will all collide at the hash value j.

6.2.5 Random Linear and Polynomial Functions

A more sophisticated compression function, which helps mitigate repeated patterns

in a set of integer keys is to use a random linear hash function. In this case, we

define a random linear hash function, h, for an integer key, k, as

h(k) = (ak + b) mod N,

where N is a prime number, and 0 < a < N and 0 ≤ b < N are independent uni-

form random integers. This hash function is chosen in order to reduce the number

of collisions caused by repeated patterns in a set of hash values and thereby get us

closer to having a “good” hash function, that is, one where the probability any two

different keys collide is 1/N . In fact, we prove below, in Section 6.5, that a random

linear hash function can be used to guarantee such a probability bound on pairwise

collisions.

Random Polynomial Functions

In some cases, we may need a hash function that guarantees that the probabilities

that larger numbers of hash values collide is the same as what one would get with

a random function. One way to achieve such a result for an integer key, k, is to use

a random polynomial hash function, h, which is defined as

h(k) = ad + k(ad−1 + k(ad−2 + · · · + k(a3 + k(a2 + ka1)) · · ·)) mod N,

where N is prime and the ai’s are independent uniformly random integers in the

range [0, N − 1], such that at least one of the coefficients in {a1, a2, . . . , ad−1} is

nonzero. For such a hash function, although we don’t include a proof here, one can

show that the probability that any 2 ≤ c ≤ d distinct keys collide at the same hash

value is 1/N c−1.

Thus, adding this hash function to the bunch we have already discussed, we

clearly have a rich collection of hash functions, each of which is designed to min-

imize the number of collisions. Even so, it is not likely that we can completely

avoid collisions with any of these schemes. Therefore, in addition to choosing

a good hash function, we also need to come up with a graceful way of handling

collisions when they occur.

198 Chapter 6. Hash Tables

6.3 Handling Collisions and Rehashing

Recall that the main idea of a hash table is to take a lookup table, A, and a hash

function, h, and use them to implement a map by storing each item (k, v) in the

“bucket” A[h(k)]. This simple idea is challenged, however, when we have two

distinct keys, k1 and k2, such that h(k1) = h(k2). The existence of such collisions

prevents us from simply inserting a new item (k, v) directly in the bucket A[h(k)].
They also complicate our procedure for performing the get(k) operation. Thus, we

need consistent strategies for resolving collisions.

6.3.1 Separate Chaining

A simple and efficient way for dealing with collisions is to have each bucket A[i]
store a reference to a set, Si, that stores all the items that our hash function has

mapped to the bucket A[i] in a linked list. The set Si can be viewed as a miniature

map, implemented using the underlying linked list, but restricted to only hold items

(k, v) such that h(k) = i. This collision resolution rule is known as separate

chaining. Assuming that we implement each nonempty bucket in this way, we can

perform the fundamental map operations as follows:

• get(k):

B ← A[h(k)]
if B = NULL then

return NULL
else

return B.get(k) // do a lookup in the list B

• put(k, v):

if A[h(k)] = NULL then

Create a new initially empty linked-list-based map, B
A[h(k)] ← B

else

B ← A[h(k)]
B.put(k, v) // put (k, v) at the end of the list B

• remove(k):

B ← A[h(k)]
if B = NULL then

return NULL
else

return B.remove(k) // remove the item with key k from the list B

6.3. Handling Collisions and Rehashing 199

0

1

2

3

4

5

6

7

8

10

11

12

41 28 54

18

90 12 38

36 10

25

9

A

Figure 6.4: Example of a hash table of size 13, storing 10 integer keys, with

collisions resolved by the chaining method. The hash function in this case is

h(k) = k mod 13.

Thus, for each map operation involving a key k, we delegate the handling of this

operation to the miniature linked-list-based map stored at A[h(k)]. So, an insertion

will put the new item at the beginning of this list in O(1) time, a find will search

through this sequence until it reaches the end or finds an item with the desired

key, and a remove will additionally remove an item after it is found. We can “get

away” with using the simple linked-list implementation in these cases, because the

spreading properties of the hash function help keep each such list small. Indeed, a

good hash function will try to minimize collisions as much as possible, which will

imply that most of our buckets are either empty or store just a single item.

In Figure 6.4, we give an illustration of a simple hash table that uses the modular

division hash function and separate chaining to resolve collisions.

For the sake of analyzing separate chaining, let us assume that our hash func-

tion, h, maps keys to independent uniform random values in the range [0, N − 1].
Thus, if we let X be a random variable representing the number of items that map

to a bucket, i, in the array A, then the expected value of X ,

E(X) =
n

N
,

where n is the number of items in the map, since each of the N locations in A is

equally likely for each item to be placed. This parameter, n/N , which is the ratio

of the number of items in a hash table, n, and the capacity of the table, N , is called

the load factor of the hash table. If it is O(1), then the above analysis says that the

expected time for hash table operations is O(1) when collisions are handled with

separate chaining.

200 Chapter 6. Hash Tables

6.3.2 Open Addressing

The separate chaining rule has many nice properties, such as allowing for simple

implementations of the fundamental map operations, but it nevertheless has one

disadvantage: it requires the use of auxiliary data structures—namely, the linked

lists that store the items for each index in the array. We can handle collisions in

other ways besides using the separate chaining rule, however. In particular, if space

is of a premium, then we can use the alternative approach of always storing each

item directly in a bucket, at most one item per bucket. This approach saves space

because no auxiliary structures are employed—it only uses the space in the bucket

array, A, itself—but it requires a bit more complexity to deal with collisions. There

are several methods for implementing this approach, which is referred to as open

addressing.

6.3.3 Linear Probing

One of the simplest open addressing collision-handling strategy is linear probing.

In this strategy, if we try to insert an item (k, v) into a bucket A[i] that is already

occupied, where i = h(k), then we try next at A[(i + 1) mod N]. If A[(i +
1) mod N] is occupied, then we try A[(i + 2) mod N], and so on, until we find

an empty bucket in A that can accept the new item. Once this bucket is located,

we simply insert the item (k, v) here. Of course, using this collision resolution

strategy requires that we change the implementation of the get(k) operation. In

particular, to perform such a search we must examine consecutive buckets, starting

from A[h(k)], until we either find an item with key equal to k or we find an empty

bucket (in which case the search is unsuccessful). (See Figure 6.5.)

21163752613

1 10987654320

New element with

key = 15 to be inserted

must probe 4 times

before inding empty slot

Figure 6.5: An insertion into a hash table using linear probing to resolve collisions.

Here we use the compression map h(k) = k mod 11.

The operation remove(k) is more complicated, however. In particular, to fully

implement this method, we should restore the contents of the bucket array to look

as though the item with key k was never inserted in its bucket A[i] in the first place.

The algorithms for the three fundamental map methods are as follows, where, for

the sake of simplicity, we assume that the table, A, is not completely full.

6.3. Handling Collisions and Rehashing 201

• get(k):

i ← h(k)
while A[i] 	= NULL do

if A[i].key = k then

return A[i]
i ← (i + 1) mod N

return NULL

• put(k, v):

i ← h(k)
while A[i] 	= NULL do

if A[i].key = k then

A[i] ← (k, v) // replace the old (k, v′)
i ← (i + 1) mod N

A[i] ← (k, v)

• remove(k):

i ← h(k)
while A[i] 	= NULL do

if A[i].key = k then

temp ← A[i]
A[i] ← NULL

Call Shift(i) to restore A to a stable state without k
return temp

i ← (i + 1) mod N
return NULL

• Shift(i):

s ← 1 // the current shift amount

while A[(i + s) mod N] 	= NULL do

j ← h(A[(i + s) mod N].key) // preferred index for this item

if j 	∈ (i, i + s] mod N then

A[i] ← A[(i + s) mod N] // fill in the “hole”

A[(i + s) mod N] ← NULL // move the “hole”

i ← (i + s) mod N
s ← 1

else

s ← s + 1

One alternative to the shifting done above for remove(k) is to replace the

deleted item by a special “deactivated item” object. With this special marker possi-

bly occupying buckets in our hash table, we would then need to modify our search

algorithm for remove(k) or get(k), so that the search for a key k should skip over

deactivated items and continue probing until reaching the desired item or an empty

bucket. Likewise, the put(k, v) algorithm should stop at a deactivated item and

replace it with the new item to be inserted. (See Exercise C-6.1.)

202 Chapter 6. Hash Tables

Analyzing Linear Probing

Recall that, in the linear-probing scheme for handling collisions, whenever an in-

sertion at a cell i would cause a collision, then we instead insert the new item in the

first cell of i+1, i+2, and so on, until we find an empty cell, wrapping our indices

to the beginning of the table if necessary. In order to analyze how long this takes

on average, we are going to use one of the Chernoff bounds, which we also discuss

in Sections 1.2.4 and 19.5.

Let X1, X2, . . . , Xn be a set of mutually independent indicator random vari-

ables, such that each Xi is 1 with some probability pi > 0 and 0 otherwise. Let

X =
∑n

i=1 Xi be the sum of these random variables, and let µ denote the mean of

X , that is, µ = E(X) =
∑n

i=1 pi. The following bound, which is due to Chernoff

(and which we derive in Section 19.5), establishes that, for δ > 0,

Pr(X > (1 + δ)µ) <

[

eδ

(1 + δ)(1+δ)

]µ

.

Having presented this Chernoff bound, we can now analyze the expected run-

ning time for doing a search or update in a hash table that is implemented using

the linear-probing collision-handling scheme. For this analysis, let us assume that

we are storing n items in a hash table of size N = 2n, that is, our hash table has

a load factor of 1/2. If our actual load factor is less than this, then this analysis

still applies, of course. If the load factor is much more than this, however, then the

performance of linear probing can degrade significantly.

Let X denote a random variable equal to the number of probes that we would

perform in doing a search or update operation in our hash table for some key, k.

Furthermore, let Xi be a 0/1 indicator random variable that is 1 if and only if

i = h(k), and let Yi be a random variable that is equal to the length of a run of

contiguous nonempty cells that begins at position i, wrapping around the end of the

table if necessary. By the way that linear probing works, and because we assume

that our hash function h(k) is random,

X =
N−1
∑

i=0

Xi(Yi + 1),

which implies that

E(X) =

N−1
∑

i=0

1

2n
E(Yi + 1)

= 1 + (1/2n)E

(

N−1
∑

i=0

Yi

)

.

Thus, if we can bound the expected value of the sum of Yi’s, then we can bound the

expected time for a search or update operation in a linear-probing hashing scheme.

6.3. Handling Collisions and Rehashing 203

Consider, then, a maximal contiguous sequence, S, of k nonempty table cells,

that is, a contiguous group of occupied cells that has empty cells next to its opposite

ends. Any search or update operation that lands in S will, in the worst case, march

all the way to the end of S. That is, if a search lands in the first cell of S, it would

make k wasted probes, if it lands in the second cell of S, it would make k − 1
wasted probes, and so on. So the total cost of all the searches that land in S can be

at most k2. Thus, if we let Zi,k be a 0/1 indicator random variable for the existence

of a maximal sequence of nonempty cells of length k, then

N−1
∑

i=0

Yi ≤
N−1
∑

i=0

2n
∑

k=1

k2Zi,k.

Put another way, it is as if we are “charging” each maximal sequence of nonempty

cells for all the searches that land in that sequence.

So, to bound the expected value of the sum of the Yi’s, we need to bound

the probability that Zi,k is 1, which is something we can do using the Chernoff

bound given above. Let Zk denote the number of items that are mapped to a given

sequence of k cells in our table. Then,

Pr(Zi,k = 1) ≤ Pr(Zk ≥ k).

Because the load factor of our table is 1/2, E(Zk) = k/2. Thus, by the above

Chernoff bound,

Pr(Zk ≥ k) = Pr(Zk ≥ 2(k/2))

≤ (e/4)k/2

< 2−k/4.

Therefore, putting all the above pieces together,

E(X) = 1 + (1/2n)E

(

N−1
∑

i=0

Yi

)

≤ 1 + (1/2n)
N−1
∑

i=0

2n
∑

k=1

k2 2−k/4

≤ 1 +
∞

∑

k=1

k2 2−k/4

= O(1).

That is, the expected running time for doing a search or update operation with linear

probing is O(1), so long as the load factor in our hash table is at most 1/2.

Linear probing saves space, but it admittedly complicates removals. In addition,

if the load factor of the hash table goes too high, then the linear-probing collision-

handling strategy tends to cluster the items of the map into contiguous runs, which

causes searches to slow down.

204 Chapter 6. Hash Tables

6.3.4 Quadratic Probing

Another open addressing strategy, known as quadratic probing, involves iteratively

trying the buckets A[(i+f(j)) mod N], for j = 0, 1, 2, . . ., where f(j) = j2, until

finding an empty bucket. As with linear probing, the quadratic probing strategy

complicates the removal operation, but it does avoid the kinds of clustering patterns

that occur with linear probing.

Secondary Clustering

Nevertheless, when the load factor approaches 1, it creates its own kind of clus-

tering, called secondary clustering, where the set of filled array cells “bounces”

around the array in a fixed pattern. If N is not chosen as a prime, then the quadratic

probing strategy may not find an empty bucket in A even if one exists. In fact, even

if N is prime, this strategy may not find an empty slot, if the bucket array is at least

half full.

6.3.5 Double Hashing

Another open addressing strategy that does not cause clustering of the kind pro-

duced by linear probing or the kind produced by quadratic probing is the double

hashing strategy. In this approach, we choose a secondary hash function, h′, and

if h maps some key k to a bucket A[i], with i = h(k), that is already occupied,

then we iteratively try the buckets A[(i + f(j)) mod N] next, for j = 1, 2, 3, . . .,
where f(j) = j · h′(k). In this scheme, the secondary hash function is not allowed

to evaluate to zero; a common choice is h′(k) = q − (k mod q), for some prime

number q < N . Also, N should be a prime.

Moreover, in using the double hashing technique, we should choose a sec-

ondary hash function that will attempt to minimize clustering as much as possi-

ble. If the functions h and f are assumed to be random functions, then it is fairly

straightforward to prove that the expected running time for a search is O(1), for

example, see Exercise C-6.3.

Trade-offs for Open Addressing

These open addressing schemes save some space over the separate chaining

method, but they are not necessarily faster. In experimental and theoretical anal-

yses, the chaining method is either competitive or faster than the other methods,

if the load factor is relatively close to 1, and open addressing tends to be faster

than separate chaining if the load factor is less than 1/2 (because it avoids an extra

pointer hop).

6.3. Handling Collisions and Rehashing 205

6.3.6 Rehashing

As shown above, the load factor, n/N , which is the ratio of the number of items in a

hash table, n, and the capacity of the table, N , has a big impact on the performance

of a hash table. The load factor of a hash table correlates to the probability that a

newly inserted item will collide with an existing item, and, as discussed above, the

load factor impacts the running times for hash table operations for both separate

chaining and open addressing methods for handling collisions. For instance, given

a constant load factor, the above analysis for separate chaining implies that the ex-

pected running time of the operations get, put, and remove in a map implemented

with a hash table with separate chaining is O(⌈n/N⌉) = O(1). Thus, we can im-

plement the standard map operations to run in constant expected time, assuming we

can maintain our hash table to have a bounded load factor. Therefore, we should

always keep the load factor of our hash table below a small constant sufficiently

smaller than 1.

Keeping a hash table’s load factor below a constant (like 1/2 or 3/4) requires

additional work whenever we add an item that would cause us to exceed this bound.

In such cases, in order to keep the load factor below the specified constant, we need

to increase the size of our bucket array, A, and change our hash function to match

this new size. Moreover, we must then insert all the existing hash-table elements

into the new bucket array using the new hash function. Such a size increase and

hash table rebuild is called rehashing. Following the approach of the extendable

array (Section 1.4.2), a good choice is to rehash into an array roughly double the

size of the original array. Such a choice implies that the additional amortized cost

required for rehashing is O(1) per insertion operation. (See Figure 6.6.)

Figure 6.6: Rehashing a hash table with capacity 8 and load factor 7/8 into a hash

table with capacity 16 and load factor 7/16. Note that all the items are placed into

their new locations according to a new hash function, h′. So, for example, the item

with key 7 was placed in bucket 3 in the old table, since h(7) = 3, but is placed in

bucket 8 in the new table, since h′(7) = 8. (We only show keys, not values.)

206 Chapter 6. Hash Tables

6.4 Cuckoo Hashing

In the separate chaining and open addressing hashing schemes, the running time

for doing a search is expected to be O(1), but it can be as bad as O(n) in the worst

case (albeit with very low probability). In the case of separate chaining, the running

time of the put(k, v) method runs in O(1) time in the worst case, however. In most

applications, we would expect to perform more searches than insertions, so it would

be nice to have a collision-handling scheme that can guarantee that searches run in

O(1) time in the worst case, while allowing for insertions to run in O(1) time as

an expected bound. Interestingly, the cuckoo hashing scheme we describe in this

section achieves this performance goal while still being an open addressing scheme,

like linear probing.

The Power of Two Choices

In the cuckoo hashing scheme, we use two lookup tables, T0 and T1, each of size

N , where N is greater than n, the number of items in the map, by at least a constant

factor, say, N ≥ 2n. In addition, we use a hash function, h0, for T0, and a different

hash function, h1, for T1. For any key, k, there are only two possible places where

we are allowed to store an item with key k, namely, either in T0[h0(k)] or T1[h1(k)].
(See Figure 6.7.)

The way we perform the get(k) method in this scheme is quite simple:

• get(k):

if T0[h0(k)] 	= NULL and T0[h0(k)].key = k then

return T0[h0(k)]
if T1[h1(k)] 	= NULL and T1[h1(k)].key = k then

return T1[h1(k)]
return NULL

This is clearly a constant-time operation, and performing the remove(k) operation

is similar:

• remove(k):

if T0[h0(k)] 	= NULL and T0[h0(k)].key = k then

temp ← T0[h0(k)]
T0[h0(k)] ← NULL

return temp
if T1[h1(k)] 	= NULL and T1[h1(k)].key = k then

temp ← T1[h1(k)]
T1[h1(k)] ← NULL

return temp
return NULL

6.4. Cuckoo Hashing 207

Figure 6.7: Cuckoo hashing. Each of the keys in the set S = {2, 3, 5, 8, 9} has two

possible locations it can go, one in the table T1 and one in the table T2. Note that

there is a collision of 2 and 8 in T2, but that is okay, since there is no collision for

2 in its alternative location, in T1.

The name “cuckoo hashing” comes from the way the put(k, v) operation is

performed in this scheme, because it mimics the breeding habits of the Common

Cuckoo bird. The Common Cuckoo is a brood parasite—it lays its egg in the nest

of another bird after first evicting an egg out of that nest. Similarly, if a collision

occurs in the insertion operation in the cuckoo hashing scheme, then we evict the

previous item in that cell and insert the new one in its place. This forces the evicted

item to go to its alternate location in the other table and be inserted there, which may

repeat the eviction process with another item, and so on. Eventually, we either find

an empty cell and stop or we repeat a previous eviction, which indicates an eviction

cycle. If we discover an eviction cycle, then we stop the insertion process and

rehash all the items in the two tables using new, hopefully better, hash functions.

208 Chapter 6. Hash Tables

Insertions

The pseudocode for the put(k, v) method is as follows. (See Figure 6.8.)

• put(k, v):

if T0[h0(k)] 	= NULL and T0[h0(k)].key = k then

T0[h0(k)] ← (k, v)
return

if T1[h1(k)] 	= NULL and T1[h1(k)].key = k then

T1[h1(k)] ← (k, v)
return

i ← 0
repeat

if Ti[hi(k)] = NULL then

Ti[hi(k)] ← (k, v)
return

temp ← Ti[hi(k)]
Ti[hi(k)] ← (k, v) // cuckoo eviction

(k, v) ← temp
i ← (i + 1) mod 2

until a cycle occurs

Rehash all the items, plus (k, v), using new hash functions, h0 and h1.

Note that the above pseudocode has a condition for detecting a cycle in the

sequence of insertions. There are several ways to formulate this condition. For

example, we could count the number of iterations for this loop and consider there

to be a cycle if we go over a certain threshold, like n or log n.

Analysis of Cuckoo Hashing

Let us analyze the expected running time for doing an insertion in the cuckoo hash-

ing scheme. Throughout this analysis, we assume N ≥ 2n, where N is the size of

each table and n is the number of items in our map. Central to this analysis is an

analysis of the possibility that a sequence of evictions could start at a cell, x1, and

evict an item that goes to a cell, x2, and evicts an item that goes to a cell, x3, and so

on. Ignoring the direction that such a sequence of evictions goes in, say that there

is a potential sequence of evictions of length 1 between x and y if there is an item

that maps to both x and y as its two possible locations. Likewise, say that there is

a potential sequence of evictions of length L between x and y if there is a possible

sequence of evictions of length L− 1 between x and some cell, z, and there is also

an item that maps to both z and y as its two possible locations. We begin our anal-

ysis with a useful fact about the probability that there will be a possible sequence

of evictions of length L between a cell, x, and a cell, y, in T0 ∪ T1.

6.4. Cuckoo Hashing 209

Figure 6.8: An eviction sequence of length 3.

Bounding the Probability of Long Eviction Sequences

The following lemma gives us a way of bounding the probability that we might

have long eviction sequences for any put operation.

Lemma 6.1: The probability that there is a possible sequence of evictions of
length L between a cell, x, and a cell, y, in T0 ∪ T1, is at most 1/(2LN).

Proof: The proof is by induction. For the base case, L = 1, note that there is

a possible length-1 eviction sequence between x and y if and only if we choose

x and y as the two possible locations for some item. The hash functions h0 and

h1 effectively choose 1 cell each out of N possible cells in T0 and T1, respectively.

Thus, the probability that a particular item chooses both x and y as its two locations

is at most 1/N2, and the probability that any of the n items in our set, S, chooses

both x and y is at most
∑

(k,v)∈S

1

N2
=

n

N2

≤
1

2
·

1

N
,

because of our assumption that N ≥ 2n. Note that the probability that there is a

possible eviction sequence of length 1 between x and y is 0 if both x and y are

in the same table, Ti, but this probability is clearly bounded by 1/(2N). So this

completes the proof for the base case, L = 1.

210 Chapter 6. Hash Tables

For the inductive step, L ≥ 2, let us assume the claim is true for possible evic-

tion sequences of length (L−1). For there to be a length-L eviction sequence from

x to y, there has to be a possible length-(L − 1) eviction sequence between x and

some cell, z, and a possible length-1 eviction sequence between z and y. By induc-

tion, for a given cell, z, the probability there is a length-(L − 1) eviction sequence

between x and z is at most 1/(2L−1N). Likewise, from the above discussion for

the base case, there is a length-1 eviction sequence between z and y with probabil-

ity at most 1/(2N). Thus, the probability that there is a length-L eviction sequence

between x and y is at most
∑

z

1

2L−1N
·

1

2N
=

∑

z

1

2LN2

≤
N

2LN2

=
1

2LN
,

since there are only N candidates for z, because it has to be in either T0 or T1,

depending, respectively, on whether y is in T1 or T0.

Counting the Expected Number of Possible Evictions

Say that two keys k and l are in the same “bucket” if there is a sequence of evictions

(of any length) between a possible cell for k and a possible cell for l. Thus, for k
and l to be in the same bucket, there has to be an eviction sequence between one of

the cells T0[h0(k)] or T1[h1(k)] and one of the cells T0[h0(l)] or T1[h1(l)]. Note

that there are 4 such possible sequences, depending on where we stop and end,

since we are ignoring the direction that a sequence of evictions can take. Then, by

Lemma 6.1, and summing across all possible lengths, the probability that k and l
are in the same bucket is bounded by

4
∞

∑

L=1

1

2LN
=

4

N

∞
∑

L=1

1

2L

=
4

N
.

Note that, by this notion of a “bucket,” the running time for performing an

insertion in a cuckoo table is certainly bounded by the number of items that map

to the same bucket as the item being inserted, so long as we don’t cause a rehash.

Thus, the expected time to insert an item with key k in this case is bounded by
∑

keys in S

4

N
= 4n/N ≤ 2.

In other words, the expected running time for performing a put(k, v) operation for

a cuckoo table is O(1), assuming this insertion does not cause a rehash.

6.4. Cuckoo Hashing 211

Allowing for Rehash Operations

So, let us consider the expected number of rehashes we may have to do. By the

description of the insertion algorithm, a rehash occurs if there is a cycle of evictions,

that is, a length-L sequence of evictions that starts and ends at the same cell. Then,

by Lemma 6.1, and the fact that we need only consider even-length sequences of

evictions (to form a cycle), the probability that there is a cycle of evictions that

starts and ends at some cell, x, is bounded by

∞
∑

L=1

1

22LN
=

∞
∑

L=1

1

4LN

=
1

N

∞
∑

L=1

1

4L

=
1

N
·

1/4

1 − 1/4

=
1

3N
.

Therefore, the probability that there is a cycle anywhere can be bounded by sum-

ming this value over all 2N cells in the cuckoo tables. That is, the probability that

any of the n items in our cuckoo hash table forms a cycle of evictions is at most

2/3. In other words, with probability at most 2/3 we will have to do a rehash dur-

ing the insertion of these n items, and, with probability at most (2/3)2 we would

have to do 2 rehashes, and, with probability at most (2/3)3 we would have to do 3

rehashes, and so on. If the time to do a rehash is O(n), then the expected time to

perform n insertions and the rehashes they may cause is bounded by

O(n) + O(n) ·
∞

∑

i=1

(2/3)i,

which is O(n). Thus, the expected amortized time to perform any single insertion

in a cuckoo table is O(1).

Summary

So, to sum up, a cuckoo hash table achieves worst-case constant time for lookups

and removals, and expected constant time for insertions. This is primarily because

there are exactly two possible places for any item to be in a cuckoo hash table,

which shows the power of two choices.

212 Chapter 6. Hash Tables

6.5 Universal Hashing

In this section, we show how a random linear hash function can be probabilistically

shown to be good. Recall that in this case we assume that our set of keys are integers

in some range. Let [0, M −1] be this range. Thus, we can view a hash function h as

a mapping from integers in the range [0, M − 1] to integers in the range [0, N − 1],
and we can view the set of candidate hash functions we are considering as a family

H of hash functions. Such a family is universal if for any two integers j and k in

the range [0, M − 1] and for a hash function chosen uniformly at random from H ,

Pr(h(j) = h(k)) ≤
1

N
.

Such a family is also known as a 2-universal family of hash functions. The goal of

choosing a good hash function can therefore be viewed as the problem of selecting

a small universal family H of hash functions that are easy to compute. The reason

universal families of hash functions are useful is that they result in a low expected

number of collisions.

Theorem 6.2: Let j be an integer in the range [0, M − 1], let S be a set of n inte-
gers in this same range, and let h be a hash function chosen uniformly, at random,
from a universal family of hash functions from integers in the range [0, M − 1] to
integers in the range [0, N − 1]. Then the expected number of collisions between j
and the integers in S is at most n/N .

Proof: Let ch(j, S) denote the number of collisions between j and integers in S
(that is, ch(j, S) = |{k ∈ S : h(j) = h(k)}|). The quantity we are interested in is

the expected value E(ch(j, S)). We can write ch(j, S) as

ch(j, S) =
∑

k∈S

Xj,k,

where Xj,k is a random variable that is 1 if h(j) = h(k) and is 0 otherwise (that

is, Xj,k is an indicator random variable for a collision between j and k). By the

linearity of expectation,

E(ch(j, S)) =
∑

s∈S

E(Xj,k).

Also, by the definition of a universal family, E(Xj,k) ≤ 1/N . Thus,

E(ch(j, S)) ≤
∑

s∈S

1

N
=

n

N
.

Put another way, this theorem states that the expected number of collisions

between a hash code j and the keys already in a hash table (using a hash function

chosen at random from a universal family H) is at most the current load factor of

6.5. Universal Hashing 213

the hash table. Since the time to perform a search, insertion, or deletion for a key

j in a hash table that uses the chaining collision-resolution rule is proportional to

the number of collisions between j and the other keys in the table, this implies that

the expected running time of any such operation is proportional to the hash table’s

load factor. This is exactly what we want.

Let us turn our attention, then, to the problem of constructing a small universal

family of hash functions that are easy to compute. The set of hash functions we

construct is actually similar to the final family we considered at the end of the

previous section. Let p be a prime number greater than or equal to the number of

hash codes M but less than 2M (and there must always be such a prime number,

according to a mathematical fact known as Bertrand’s Postulate).

Define H as the set of hash functions of the form

ha,b(k) = (ak + b mod p) mod N.

The following theorem establishes that this family of hash functions is universal.

Theorem 6.3: The family H = {ha,b : 0 < a < p and 0 ≤ b < p} is universal.

Proof: Let Z denote the set of integers in the range [0, p − 1]. Let us separate

each hash function ha,b into the functions

fa,b(k) = (ak + b) mod p

and

g(k) = k mod N,

so that ha,b(k) = g(fa,b(k)). The set of functions fa,b defines a family of hash

functions F that map integers in Z to integers in Z. We claim that each function in

F causes no collisions at all. To justify this claim, consider fa,b(j) and fa,b(k) for

some pair of different integers j and k in Z. If fa,b(j) = fa,b(k), then we would

have a collision. But, recalling the definition of the modulo operation, this would

imply that

aj + b −

⌊

aj + b

p

⌋

p = ak + b −

⌊

ak + b

p

⌋

p.

Without loss of generality, we can assume that k < j, which implies that

a(j − k) =

(⌊

aj + b

p

⌋

−

⌊

ak + b

p

⌋)

p.

Since a 	= 0 and k < j, this in turn implies that a(j − k) is a multiple of p. But

a < p and j − k < p, so there is no way that a(j − k) can be a positive multiple

of p, because p is prime (remember that every positive integer can be factored into

a product of primes). So it is impossible for fa,b(j) = fa,b(k) if j 	= k. To put

this another way, each fa,b maps the integers in Z to the integers in Z in a way that

defines a one-to-one correspondence. Since the functions in F cause no collisions,

the only way that a function ha,b can cause a collision is for the function g to cause

a collision.

214 Chapter 6. Hash Tables

Let j and k be two different integers in Z. Also, let c(j, k) denote the number

of functions in H that map j and k to the same integer (that is, that cause j and k
to collide). We can derive an upper bound for c(j, k) by using a simple counting

argument. If we consider any integer x in Z, there are p different functions fa,b

such that fa,b(j) = x (since we can choose a b for each choice of a to make this

so). Let us now fix x and note that each such function fa,b maps k to a unique

integer

y = fa,b(k)

in Z with x 	= y. Moreover, of the p different integers of the form y = fa,b(k),
there are at most

⌈p/N⌉ − 1

such that g(y) = g(x) and x 	= y (by the definition of g). Thus, for any x in Z,

there are at most ⌈p/N⌉ − 1 functions ha,b in H such that

x = fa,b(j) and ha,b(j) = ha,b(k).

Since there are p choices for the integer x in Z, the above counting arguments

imply that

c(j, k) ≤ p
(⌈ p

N

⌉

− 1
)

≤
p(p − 1)

N
.

There are p(p− 1) functions in H , since each function ha,b is determined by a pair

(a, b) such that 0 < a < p and 0 ≤ b < p. Thus, picking a function uniformly at

random from H involves picking one of p(p− 1) functions. Therefore, for any two

different integers j and k in Z,

Pr(ha,b(j) = ha,b(k)) ≤
p(p − 1)/N

p(p − 1)

=
1

N
.

That is, the family H is universal.

In addition to being universal, the functions in H have a number of other nice

properties. Each function in H is easy to select, since doing so simply requires that

we select a pair of random integers a and b such that 0 < a < p and 0 ≤ b < p.

In addition, each function in H is easy to compute in O(1) time, requiring just one

multiplication, one addition, and two applications of the modulus function. Thus,

any hash function chosen uniformly at random in H will result in an implementa-

tion of a map so that the fundamental operations all have expected running times

that are O(⌈n/N⌉), since we are using the chaining rule for collision resolution.

6.6. Exercises 215

6.6 Exercises

Reinforcement

R-6.1 Alice says that a hash table with collisions handled using separate chaining can
have a load factor greater than 1. Bob says that this is impossible. Who is right,
and why?

R-6.2 Bob says that a hash table with collisions handled using open addressing can have
a load factor greater than 1. Alice says that this is impossible. Who is right, and
why?

R-6.3 Describe the limitations of using a linked list to store a collection of key-value
pairs subject to put(k, v) and get(k).

R-6.4 Draw the 11-item hash table resulting from hashing the keys 12, 44, 13, 88, 23,
94, 11, 39, 20, 16, and 5, using the hash function h(i) = (2i + 5) mod 11 and
assuming collisions are handled by chaining.

R-6.5 What is the result of the previous exercise, assuming collisions are handled by
linear probing?

R-6.6 Show the result of Exercise R-6.4, assuming collisions are handled by quadratic
probing, up to the point where the method fails because no empty slot is found.

R-6.7 What is the result of Exercise R-6.4 assuming collisions are handled by double
hashing using a secondary hash function h′(k) = 7 − (k mod 7)?

R-6.8 Give a pseudocode description of an insertion into a hash table that uses quadratic
probing to resolve collisions, assuming we also use the trick of replacing deleted
items with a special “deactivated item” object.

R-6.9 Show the result of rehashing the hash table shown in Figure 6.4 into a table of
size 19 using the new hash function h(k) = 2k mod 19.

Creativity

C-6.1 Give the pseudocode description for performing insertion, searching, and re-
moval from a hash table that uses linear probing to resolve collisions where we
use a special marker to represent deleted elements.

C-6.2 In our description of hashing with the separate chaining rule, we assumed each
cell in the array, A, was a pointer to a linked list, which wastes space in the case
where the list holds only one item. Show how to modify our implementation so
that we don’t waste space on additional pointers to linked-list nodes for the cells
in A that hold only one item.

C-6.3 Suppose that both the hash function, h, and the hash function, f , used in the
double hashing open addressing scheme are random functions. Show that the
expected time to perform the get(k) operation is O(1).

216 Chapter 6. Hash Tables

C-6.4 Dr. Wayne has a new way to do open addressing, where, for a key k, if the
cell h(k) is occupied, then he suggests trying (h(k) + i · f(k)) mod N , for
i = 1, 2, 3, . . ., until finding an empty cell, where f(k) is a random hash function
returning values from 1 to N − 1. Explain what can go wrong with Dr. Wayne’s
scheme if N is not prime.

C-6.5 Describe a different way of detecting an eviction cycle in the cuckoo hashing
scheme than in counting iterations.

Hint: You are allowed to use additional memory or to mark the cells of the two
tables.

C-6.6 A multimap is data structure that allows for multiple values to be associated with
the same key. It has a put(k, v) method, which inserts an item with key k and
value v even if there is already an item with key k (but not the same key-value
pair), and a FindAll(k) method, which returns all the values that have the key k.
Describe a scheme that implements a multimap so that the put(k, v) method runs
in O(1) expected time and the FindAll(k) method runs in O(1 + s) time, where
s is the number of values with key k.

C-6.7 Suppose you would like to build a hash table for images, where the key for each
image is a “thumbnail” image of 75×75 pixels, with each pixel being one of 256
possible colors. Describe a hash function for a set of such images. Your hash
function should be fast to compute and it should strive to map different images
to different hash values. In particular, reflections and 90◦ rotations of the same
image should, in general, map to different hash values.

Applications

A-6.1 Suppose you are working in the information technology department for a large
hospital. The people working at the front office are complaining that the soft-
ware to discharge patients is taking too long to run. Indeed, on most days around
noon there are long lines of people waiting to leave the hospital because of this
slow software. After you ask if there are similar long lines of people waiting to
be admitted to the hospital, you learn that the admissions process is quite fast in
comparison. After studying the software for admissions and discharges, you no-
tice that the set of patients currently admitted in the hospital is being maintained
as a linked list, with new patients simply being added to the end of this list when
they are admitted to the hospital. Describe a modification to this software that
can allow both admissions and discharges to go fast. Characterize the running
times of your solution for both admissions and discharges.

A-6.2 Perform a comparative analysis that studies the collision rates for various hash
functions for character strings, such as various polynomial hash codes for differ-
ent values of the parameter a. Use a hash table to determine collisions, but only
count collisions where different strings map to the same hash code (not if they
map to the same location in this hash table). Test these hash codes on text files
found on the Internet.

A-6.3 In a double-entry accounting system, every business transaction has to be en-
tered as two separate transactions, in different two accounts, once as a debit and

6.6. Exercises 217

once as a credit. For example, if a business borrows $10,000 from a bank, the
business should enter a debit of $10,000 to its Cash account a credit of $10,000
to its Notes Payable account. In order to be in balance, every debit in such a
system must have a matching credit. Describe an efficient algorithm to test if a
double-entry accounting system is in balance. What is the running time of your
method in terms of n, the number of business transactions?

A-6.4 Sports announcers are expected to keep talking during a broadcast of a sporting
event even when there is nothing actually happening, such as during half-time.
One common way to fill empty time is with sports trivia. Suppose, then, that you
are going to be a sports announcer for the big game between the Bears and the
Anteaters. To fill the empty time during half-time, you would like to say that this
is the nth time that a game between the Bears and Anteaters has had a score of
i-versus-j at half-time. The problem is that you don’t know the values of i and j
yet, of course, because the game hasn’t happened yet, and, once half-time arrives
you won’t have time to look through the entire list of Bear-Anteater half-time
scores to count the number of times the pair (i, j) appears. Describe an efficient
scheme for processing the list of Bear-Anteater half-time scores before the game
so that you can quickly say, right at the start of half-time, how many times the
pair (i, j) has occurred at similar moments in the past. Ideally, you would like
the processing task to take time proportional to the number of previous games
and the querying task to take constant time.

A-6.5 Imagine that you are building an online plagiarism checker, which allows teach-
ers in the land of Edutopia to submit papers written by their students and check
if any of those students have copied whole sections from a set, D, of documents
written in the Edutopian language that you have collected from the Internet. You
have at your disposal a parser, P , that can take any document, d, and separate it
into a sequence of its n words in their given order (with duplicates included) in
O(n) time. You also have a perfect hash function, h, that maps any Edutopian
word to an integer in the range from 1 to 1,000,000, with no collisions, in con-
stant time. It is considered an act of plagiarism if any student uses a sequence
of m words (in their given order) from a document in D, where m is a parame-
ter set by parliament. Describe a system whereby you can read in an Edutopian
document, d, of n words, and test if it contains an act of plagiarism. Your system
should process the set of documents in D in expected time proportional to their
total length, which is done just once. Then, your system should be able to pro-
cess any given document, d, of n words, in expected O(n+m) time (not O(nm)
time!) to detect a possible act of plagiarism.

A-6.6 It is well known that in a room of n people, the probability that at least two of
them have the same birthday is over 1/2 if n > 23, which is a phenomenon
known as the birthday paradox. Suppose, then, that you have a list of n people
and their birthdays. Describe a way, in O(n) expected time, to test whether two
of the people on this list have the same birthday.

A-6.7 One way to measure the reading difficulty of a book is to count the number of
unique words it contains. For example, Green Eggs and Ham, by Dr. Seuss,
contains 50 unique words, whereas the book of Isaiah, from the Bible, contains
almost 2,000 unique (Hebrew) words. Suppose you have a book, B, containing
n total words (including duplicates). Describe an efficient scheme to count the

218 Chapter 6. Hash Tables

number of unique words in B. You may assume that you have a parser that
returns the n words in B as a sequence of character strings in O(n) time. What
is the running time of your method?

A-6.8 Imagine that you work for an insurance company that is insuring people against
identity theft. You have just learned about a major security breach at a prominent
bank used by many of your customers. Through back channels, you have ob-
tained the list of Social Security numbers of the bank customers whose banking
records were stolen, and, of course, you know the Social Security numbers for
your own customers. Describe an efficient scheme for identifying which of your
customers were victims in this security breach. What is the running time of your
method in terms of n, the number of customers of your insurance company, and
m, the number of bank customers who were victims in this security breach?

A-6.9 A popular tool for visualizing the themes in a speech is to draw a word cluster
diagram, where the unique words from the speech are drawn in a group, with
each word’s size being in proportion to the number of times it is used in the
speech. Given a speech containing n total words, describe an efficient method
for counting the number of times each word is used in that speech. You may
assume that you have a parser that returns the n words in a given speech as a
sequence of character strings in O(n) time. What is the running time of your
method?

A-6.10 Most modern text processing systems have a built-in spelling checker, which
checks to make sure words are spelled correctly and offers suggested corrections
when words are misspelled. Suppose you have a dictionary, D, of n English
words and would like to build such a spelling checker for two common spelling
mistakes: transpositions, where two consecutive letters are swapped, and substi-
tutions, where a single letter is replaced with a different letter. Describe a scheme
to process the dictionary D in expected O(n) time and then process any m-letter
word, w, to see if w is spelled correctly, and, if not, to collect all the suggested
correct English words that differ from w in a single transposition or substitution.
The processing of any such w should take O(m + s) time, where s is the total
length of all the suggested alternatives to w.

Chapter Notes

Classic discussions of hashing can be found in well-known books by Knuth [131] and
Gonnet and Baeza-Yates [85], including descriptions of separate chaining and open ad-
dressing schemes for handling collisions. Vitter and Chen [212] discuss coalesced hashing,
which is a hybrid of these two collision-handling strategies. Discussions concerning re-
hashing can be found in works by Fagin et al. [69] and Litwin [145]. Eppstein [67] has a
simplified analysis of linear probing that avoids Chernoff bounds, which we have adapted
to an analysis based on Chernoff bounds in this chapter. A nice discussion of tabulation
hashing can be found in a paper by Patrascu and Thorup [171]. Cuckoo hashing is due
to Pagh and Rodler [167]. The analysis of cuckoo hashing given in this chapter is based
on an unpublished manuscript, “Cuckoo Hashing for Undergraduates,” by Pasmus Pagh.
Universal hashing is due to Carter and Wegman [42].

